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1. Introduction 

The primary motivation for this work is to create a general framework for estimating the attitude, 
velocity, and position states for roll-controlled, guided projectiles for which assumptions about 
the projectile dynamics may not be valid. Guided projectiles could potentially offer several 
strategic advantages to the Warfighter by reducing the miss distance, shaping the terminal 
trajectory, and/or homing to moving targets. While guidance solutions exist for both fin-
stabilized and spin-stabilized spinning projectiles, nonspinning projectiles are able to achieve 
more lateral acceleration for conducting more effective maneuvers than their spinning 
counterparts (1). The challenge with nonspinning projectiles is that they don’t benefit from the 
added observability provided from a predictable spin rate. The “slowly varying spin rate” 
assumption is often used to correct for sensor biases, either directly (2, 3) or indirectly (4). As a 
simple example, consider the output of a radial magnetometer as depicted in figure 1. The 
spinning of the round makes it fairly easy to separate a magnetometer sensor bias from the roll 
angle with respect to the magnetic field vector because the output signal is periodic. This can 
either be accomplished with empirical routines such as peak finding, or with a linear state 
estimator by augmenting the projectile state vector with magnetometer bias states that are 
modeled as constants. If the projectile stops rolling, this continuous observability goes away, and 
the estimator must rely much more heavily on the process models to account for the uncertainty 
in attitude and sensor errors.  

 

Figure 1. Projection of the magnetic field vector in inertial (i) coordinates into the 
body-fixed (b) frame as measured by magnetometers for a rolling 
projectile 

To increase the fidelity of the attitude estimator process model, the propagation equations used in 
the prediction step of the Kalman filtering process are based on the output of an inertial 
measurement unit (IMU) rather than a projectile-specific dynamic model. While the dynamic 
model predictions may still be useful as a heuristic measurement, a dynamic model is usually an 
approximation of the true dynamics. Errors in the prediction quality are usually approximated by 
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Gaussian white noise acting as a random input to the dynamic system. Since this noise is only an 
artifact of mathematical convenience rather than a true physical phenomenon, it cannot be 
measured and is usually used as a tuning parameter. When using kinematics driven by IMU 
output as the process model, the statistics of the gyroscope and accelerometer noise are 
measureable, and can be easily incorporated into an extended Kalman filtering framework. A 
realistic IMU typically has its own sources of modeling error due to sensor calibration errors, 
non-linearity, cross-axis sensitivity, g-sensitivity, misalignment, etc., which can be either 
modeled or approximated by increasing the covariance of the process noise. 

In the past, both dynamic models (5) and kinematic models (6) have been used as process models 
for projectile Kalman filters, as well as combinations of the two (7). There have been practical 
concerns with using an IMU on a projectile, the first of which is the availability of sensors that 
are capable of measuring the spin rate of a projectile. On a spin-stabilized projectile spinning in 
the neighborhood of 300 Hz, this is still the case. However, in recent years, micro-
electromechanical system (MEMS) gyroscopes have been able to measure the spin-rates of fin-
stabilized projectiles such as mortars, which typically spin at rates in the neighborhood of 20 Hz. 
It is assumed that any nonspinning projectile will not be de-spun from any rate higher than that 
of typical fin-stabilized projectiles, if indeed it needs to be de-spun at all. The other concern with 
using IMUs on gun-launched projectiles is the tradeoff between affordability, durability, and 
performance. Automotive-grade MEMS components have been used in the harsh gun-launch 
environment for years, and MEMS technology has generally demonstrated its survivability and 
affordability.  

There are still some challenges with MEMS components, however. In the past, sensor bias 
changes have been observed following the launch event, and most inertial sensors either saturate 
or temporarily malfunction during the actual launch event although they recover milliseconds 
after leaving the gun barrel. This leads to an inertial navigation challenge that is particular to 
gun-launched munitions:  the full or partial loss of initial conditions immediately following gun 
launch. The final concern is sensor quality. The environmental and cost restrictions prohibit the 
use of most navigation grade or even tactical-grade IMUs used in other applications. However, 
the flight times of guided munitions are very short, so random walk due to relatively poor noise 
performance is not as much of a concern as determining calibration and initial condition errors 
imposed by gun launch. In addition, the MEMS industry is still making progress in improving 
the noise performance, linearity, temperature stability, cross-axis sensitivity, and vibration 
rejection of their products, and will likely continue to do so for some time. Therefore, at the very 
minimum a framework should be in place for evaluating these components for projectile state 
estimation as they improve.  

The choice of attitude representation is an important one. Both quaternions and direction cosine 
matrices (DCMs) are common in aerospace applications. Quaternions seem to be used in the 
majority of attitude estimators, because they have fewer elements to store in memory than a 
DCM, and they are easier to normalize. Euler angles typically don’t see much use outside of 
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projectile applications, because Euler angles can become discontinuous when representing 
certain orientations and their propagation equations can become indeterminate (8). Since gun-
launched projectiles generally don’t experience a wide range of heading angles, this has not a 
primary concern. The other major advantage of quaternions (or DCMs) over Euler angles is their 
propagation equations are linear with respect to the quaternion and only depend on the IMU’s 
angular velocity. This enables much more effective use of the angular rate sensors, as described 
in section 3 of this report.  

A secondary motivation for writing this report is to provide a detailed explanation of 
multiplicative quaternion error-state Kalman filter mechanizations. Although this form of the 
Kalman filter has been used in space applications since the 1960s (9) and many other 
applications (10), clear documentation, especially in terms of guided projectiles, has been 
difficult to find in the literature. Section 2 discusses notation, coordinate systems, and some 
preliminary quaternion information that should make this report more readable. Section 4 
presents a derivation of the error state kinematic equations that parallels those presented in 
Crassidis and Junkins (11) and Roumeliotis et al. (12), although a different convention for the 
quaternion definition is used to be consistent with the conventions used in MATLAB* software 
and Titterton and Weston (8) and Stevens and Kerce (13). 

The position and velocity error state kinematics are included for completeness, although in a 
very simplified form. In the scope of this work, the local Earth-fixed navigation system is treated 
as inertial, so many aspects of inertial navigation such as Coriolis acceleration, Schuler tuning, 
and plumb-bob gravity are not covered here.  

Section 5 discusses the measurement of the process noise. The measurements commonly 
available to guided projectiles and the mapping of the error states to the residuals, the differences 
between the measured sensor outputs and predicted ones, are discussed in section 6. Section 7 
discusses how all of the error state modeling can be implemented in a Kalman filter running on a 
microcontroller with processing delays. Two different guided projectile missions are simulated to 
examine the performance of a Kalman filter that estimates the attitude, velocity, position, gyro 
bias, accelerometer bias, and magnetometer bias errors. The first mission is a short range, direct 
fire mission where a nonspinning round is controlled and guided to a moving target. The second 
mission is a mortar that is de-spun near apogee and maneuvers to a ground-based target. The 
simulations and filter performance are discussed in section 8. Finally, section 9 discusses 
conclusions and the direction of future research. 

 

 

                                                 
* MATLAB is a registered trademark of MathWorks, Inc., Natick, MA. 
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2. Conventions 

Vectors are defined by lowercase bold script. The terms reference frame and coordinate system 
are used interchangeably, and all coordinate systems consist of three orthonormal basis vectors; 
for example, coordinate system a consists of the vectors , ,a a ax y z . A superscript denotes the 
coordinate system in which the coordinates of the vector are viewed; for example, av is the 
coordinate of the vector v in the coordinate system a . There are two main reference frames used 
in this work. The first is the inertial reference ( i -frame). A major simplification used throughout 
this work is that any reference frame rigidly fixed to the surface of the Earth can be treated as an 
inertial reference frame for the application to gun-launched projectiles. The inertial frame used 
here has the z-axis pointing toward the center of the Earth, the x-axis pointed along a level line 
from the gun toward the initial target location, and the y-axis pointed to the right of the line of 
fire. The second coordinate system used is the body-fixed reference ( b -frame), which is rigidly 
attached to the projectile. For the purposes of inertial navigation, it is assumed that the origin of 
the body frame is located at the location of the accelerometers in the IMU. This prevents the 
need to account for centripetal and tangential acceleration terms in the integration process. 
However, the velocity and position states obtained will be those of the IMU and not those of the 
center of gravity (CG) of the projectile. The two coordinate systems are displayed in figure 2. 

 

Figure 2. Coordinate system definitions. 
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To relate the (b-frame) to the (i-frame), we will use quaternion arithmetic. The definition of a 
quaternion used here has the scalar component as the first element, and the vector component as 
the second through fourth element, i.e., 

 1

2:4

q 
=  
 

q
q

 . (1) 

The rotation vector μ can also be used to parameterize the quaternion as follows: 

 1

2:4

cos
2

sin
2

q

  
  

     =   
    
  
  

μ

q μμ
μ

. (2) 

 
The quaternion product, denoted⊗ , of any two quaternions p and q is given by (14):  

 1 1 2:4 2:4

1 2:4 1 2:4 2:4 2:4

p q
p q

− ⋅ 
⊗ =  + + × 

p q
p q

q p p q
. (3) 

The quaternion inverse is defined as the scalar component with the negative of the vector 
component: 

 11

2:4

q−  
=  − 

q
q

. (4) 

This quaternion inverse multiplied by the quaternion equals the identity quaternion: 

 1 1−  
⊗ =  

 
q q

0
. (5) 

Converting a vector from the inertial frame to the body frame can be accomplished with 
quaternion rotation: 

 10 0
b i

−   
= ⊗ ⊗   

   
q q

v v
. (6) 

The same rotation can also be accomplished by converting the quaternion into the direction 
cosine matrix: 

 ( )b b i
i=v C q v , (7) 

where: 
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 ( ) ( ) [ ]2
2:4 2:4 3 3 1 2:4 2:4 1 2:42 2b T T

i x q q= + − − ×C q q q I q q q . (8) 

The general rotation matrix operator ( )b
iC q reads “transformation from i to b frame coordinates 

parameterized by the quaternionq .” The [ ]•× operator denotes the skew-symmetric matrix of a 

vector 3∈v  , so that multiplying a vector times the matrix is equivalent to taking the cross 
product of the two vectors, i.e.,  

 [ ]
3 2

3 1

2 1

0
0

0

v v
v v
v v

− 
 × = − 
 − 

v , (9) 

so that 
 
 [ ]× = ×v w v w . (10) 

 

3. IMU Integration With Quaternions 

Integrating the gyro outputs to obtain the projectile attitude is a prerequisite for integrating 
acceleration to obtain the velocity and position states. The kinematic equations for a quaternion 
are given by: 

 
01

2 b
ib

 
= ⊗ 

 
q q

ω
 . (11) 

The vector b
ibω consists of the body-fixed coordinates of the angular velocity of the body frame 

with respect to the inertial reference frame. Equation 3 can be used to reformulate equation 11 as 
a matrix multiplication: 

 

( )

01
2

1
2

b T
ib

b b
ib ib

b
ib

 −
=  

 − ×   

=

ω
q q

ω ω

Ω ω q



. (12) 

It is clear that the quaternion propagation equations are linear with respect to the quaternion. The 
algorithm presented here is identical to that presented in reference 8 for computing the solution 
to equation 12 between time steps in a sampled system, although the explanation differs slightly. 
For the remainder of this section, the reference frame notation b

ibω  will be replaced by iteration 
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notation kω , meaning the value of b
ibω sampled at time k . In this case the solution to equation 12 

is given by: 

 ( )1
1exp
2k kt+

 = ∆ 
 

q Ω ω q . (13) 

The value of ω is usually taken to be: 

 1

2
k k−+

=
ω ωω . (14) 

The incremental rotation vector can be approximated as* t= ∆σ ω . For a given rotation vector, 
the exact solution for the matrix exponential in equation 13 is given by (8):  
 

 ( )
( ) ( )

( ) ( ) ( ) [ ]3 3

sin 2
cos 2

1 2exp
2 sin 2 sin 2

cos 2
2 2

T

x

 
 

   =    
 − ×
  

σ
σ σ

Ω σ
σ σ

σ σ I σ
. (15) 

The velocity dynamics are a function of the specific force measured by the accelerometers bf , the 
gravity vector ig , and the quaternion: 

 ( )i i b i
b= +v C q f g . (16) 

Using equations 13–15, it is possible to predict what the quaternion will be at the current time 
step based on angular rate sensor data. Velocity and position are estimated via simple trapezoidal 
integration, which requires the quaternion at time k to be estimated first. The velocity update is 
given by: 

 ( ) ( )1 1
12

i b i b
b k k b k k i

k kt− −
−

 +
= + ∆ + 
 

C q f C q f
v g v . (17) 

The position update is then given by: 

 1
12

i i
i ik k
k kt−

−

+
= ∆ +

v vr r . (18) 

                                                 
*There exist higher-fidelity representations of the rotation vector. Bortz (15) derives the rotation vector, its dynamics, and its 

relation to the DCM from geometric arguments. It was shown that the rotation vector can be integrated at a high integration rate 
and then used to update the DCM only when needed, significantly increasing algorithm efficiency. Since then, particularly in 
Savage (16), several algorithms have been created for computing the rotation vector on digital processors, and how the rotation 
vector relates to the DCM and quaternion attitude representation. The advantage of using the trapezoidal approximation used here 
is that calibration corrections can easily be applied after the inertial sensors have been sampled as discussed in more detail in 
section 7, without needing to retain several samples in memory. The disadvantage is that the approximation will necessitate a 
faster KF update rate. 
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This algorithm assumes that the specific force in the inertial frame is fairly constant over the 
update interval. The inertial specific force ( )i i b

b=f C q f , can be computed in terms of the 
projectile’s acceleration i

cgv and the location of the CG relative to the body frame b
cgr :  

 ( ) [ ][ ] [ ]i b i i b i b i
b cg b cg b cg= − × × − × −C q f v C ω ω r C ω r g . (19) 

 
Full derivation is given in appendix A. 

On a guided projectile, the acceleration of the CG does not usually change dramatically since 
most projectiles have limited control authority. Mounting the accelerometer triad on the spin axis 
is strongly advisable, since centrifugal accelerations can be quite large. Algorithms in literature 
typically don’t use a trapezoidal integration scheme at all but use a combination of incremental 
velocity, rotation correction, and dynamic integral terms, and potentially more advanced sculling 
and scrolling compensation algorithms (8, 16). However, for our purposes the algorithm provides 
a method of post applying calibration corrections and is computationally tractable. 
 

4. Error State Formulation 

The integration of the quaternion, velocity, and position states is in reality driven by non-perfect 
gyroscopes and accelerometers. Therefore, the integrated states are only estimations of the true 
states. Terms that are estimates are denoted by the ^ over script. The estimated state dynamics 
are given by: 

 
01ˆ ˆ
ˆ2 b

ib

 
= ⊗ 

 
q q

ω
 , (20) 

 ( ) ˆˆ ˆˆ i i b i
b= +v C q f g , (21) 

and ˆ ˆi i=r v . (22) 

From this point forward, we will drop the super and subscripts for simplicity. The IMU outputs 
estimated angular velocity and specific force vectors, which are defined by: 

 ˆ= + δω ω ω . (23) 

 ˆ= + δf f f . (24) 

The perturbation termsδω andδf can be parameterized by any noise and sensor calibration errors 
substantial enough to affect the navigation solution. 
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The true quaternion q can be described as the quaternion multiplication of the estimated 
quaternion q̂  and a small error quaternion δq : 

 ˆ= ⊗δq q q . (25) 

 1ˆ −δ = ⊗q q q . (26) 

This description is not common in other extended Kalman filtering problems, which typically 
treat the error terms as additive, i.e., ˆ= + δq q q . The additive error assumption is used in most 
Kalman filtering texts such as Simon (17) and Gelb (18). Indeed, there are even several 
quaternion estimators that use this assumption (10). Adding two unit quaternions together does 
not produce another unit quaternion, which creates a problem that is normally dealt with by 
gratuitous renormalization. It is possible, but quite complicated, to correctly account for these 
computational aspects in the error covariance matrix (19). The multiplicative error formulation 
also has the physical interpretation of applying a small rotation correction. This can easily be 
shown in the formulation of the composite DCM. Using the conventions in this work, the total 
DCM is given by: 

 ( ) ( ) ( ) ( )ˆ ˆb
i = ⊗δ = δC q C q q C q C q . (27) 

 

Another benefit of the multiplicative error quaternion is that only three terms are needed to 
parameterize it instead of four. Since the error quaternion represents a small rotation, the rotation 
vector μ from equation 2 has small magnitude which means that the scalar component of δq is 
approximately 1 and need not be estimated. The only downside is that the linearization of the 
processes and measurement equations cannot be accomplished simply by computing Jacobians. 

The quaternion error state dynamics are produced by differentiating equation 26 with respect to 
time: 

 1 1ˆ ˆ− −δ = ⊗ + ⊗q q q q q  . (28) 

A substitution for 1ˆ −q can be generated from the fact that 1ˆ ˆ− ⊗q q always produces the identity 
quaternion, which is constant. 

 
( )1

1 1
ˆ ˆ

ˆ ˆ ˆ ˆ
d

dt

−
− −

⊗
= ⊗ + ⊗ =

q q
q q q q 0  . (29) 

 

1 1 1

1 1

1

ˆ ˆ ˆ ˆ
01ˆ ˆ ˆ
ˆ2

01 ˆ
ˆ2

b
ib

b
ib

− − −

− −

−

= − ⊗ ⊗

 
= − ⊗ ⊗ ⊗ 

 
 

= − ⊗ 
 

q q q q

q q q
ω

q
ω

 

. (30) 
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Substituting equations 30 and 11 into equation 28 leads to: 

 

1 10 01 1ˆ ˆ
ˆ2 2

0 01 1
ˆ2 2

b
ib

− −   
δ = ⊗ ⊗ − ⊗ ⊗   

  
   

δ = δ ⊗ − ⊗δ   
   

q q q q q
ω ω

q q q
ω ω





. (31) 

Using the definition of the estimated angular velocity (equation 20), this becomes: 

 
0 0 01 1 1
ˆ ˆ2 2 2

     
δ = δ ⊗ − ⊗δ + δ ⊗     δ     
q q q q

ω ω ω
 . (32) 

The definition of quaternion multiplication can now be applied along with the fact that 1 1qδ = to 
achieve further simplification: 

 

2:4 2:4 2:4

2:4 2:4 2:4

2:4

2:4 2:4 2:4

ˆ ˆ ˆ1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ2 2 2

ˆ0 0 1
ˆ ˆ ˆ2

−δ ⋅ ⋅δ −δ ⋅δ     
δ = + +     + δ × − − ×δ δ + δ ×δ     

−δ ⋅δ     
= +     δ − ×δ δ + δ ×δ     

q ω ω q q ω
q

ω q ω ω ω q ω q ω

q ω
q ω q ω q ω





. (33) 

Since the quaternion error states are assumed to be small in magnitude, the error state dynamics 
can be approximated by: 

 2:4 2:4
1ˆ
2

δ ≅ − ×δ + δq ω q ω . (34) 

At this point, it is convenient to replace the quaternion error states 2:4δq with a vector of small 
angles: 

 2:42= δα q . (35) 

The first convenience comes from removing the factor of ½ from equation 34: 

 ˆ≅ − × + δα ω α ω . (36) 

The second convenience comes from the simplification of equation 27. Evaluating equation 8 
with δq and assuming products of the terms in 2:4δq are approximately zero results 

in ( ) [ ]2:42b
i  δ ≅ − δ × C q I q . Therefore, the DCM and its inverse can be expressed as: 

 ( ) [ ] ( )ˆb b
i i ≅ − × C q I α C q . (37) 

 ( ) ( ) [ ]ˆi i
b b  ≅ + × C q C q I α . (38) 
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The velocity and position error state dynamics are simpler to derive, since their error states are 
additive: 

 ˆδ = −v v v . (39) 

 ˆδ = −r r r . (40) 

The velocity error states propagate according to: 

 ˆδ = −v v v  . (41) 

By utilizing equations 21, 24, 38, and 41, an expression for the velocity error state dynamics can 
be derived: 

( ) ( ) ˆˆ ˆi b i b
b bδ = + − +v C q f g C q f g ( ) [ ] ( ) ( )ˆ ˆˆ ˆ ˆi b i b

b b δ = + × + δ + − − v C q I α f f g C q f g  

( )[ ] ( ) ( ) [ ]ˆˆ ˆ ˆi ii b
b b b

δ = × + δ + × δ + δv C q α f C q f C q α f g  (42) 

 

Due to the small angle error assumption, it is assumed that 

 ( ) [ ] ( )ˆ ˆi i

b b
 + × δ ≅ δ C q I α f C q f . (43) 

Also, it is assumed for this application that the gravity errorδg is negligible. Therefore, equation 42 
can be expressed as a linear system with respect to the error states: 

 ( ) ( )ˆˆ ˆ ii b
b b

 δ = − × + δ v C q f α C q f . (44) 

The position error state dynamics are: 

 ˆ ˆδ = − = − = δr r r v v v  . (45) 

The angular rate and specific force error states δω andδf are parametric, and can be used to 
model sensor calibration or noise terms. The angular rate error model that we will use here is a 
bias plus noise model: 

 ˆ ω ω= − −ω ω β η  (46) 

and ω ω=β υ , (47) 

where ωη  and ωυ are white random processes with cross-correlations: 

 ( ) ( ) ( ) ( )2TE t diag tω ω ω τ = δ − τ η η σ . (48) 

 ( ) ( ) ( ) ( )2TE t diag tω ω βω τ = δ − τ υ υ σ . (49) 
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The angular rate error term from equations 23 and 46 becomes: 

 ω ωδ = − −ω β η . (50) 

 ωδ = −ω υ . (51) 

The specific force measurements from the accelerometers are treated in a similar manner: 

 ˆ
f f= − −f f β η , (52) 

 f f=β υ , (53) 

and f fδ = − −f β η , (54) 

where fη  and fυ are white random processes with cross-correlations: 

 ( ) ( ) ( ) ( )2T
f f fE t diag t τ = δ − τ η η σ . (55) 

 ( ) ( ) ( ) ( )2T
f f fE t diag tβ τ = δ − τ υ υ σ . (56) 

Magnetometers will be used as measurements in the eventual Kalman filter implementation. The 
magnetometer is not an inertial sensor, and its error dynamics are uncoupled with the inertial 
navigation states, but a bias term is still augmented to the total error state vector since some 
correlation is expected to be introduced by the Kalman filter measurement update equations. The 
magnetometer bias vector mβ here is treated as a slowly diverging random walk process driven 
by the noise process mυ  with cross correlation:  

 ( ) ( ) ( ) ( )2T
m m mE t diag tβ τ = δ − τ υ υ σ . (57) 

 m m=β υ . (58) 

The total error state vector is now: 

 { }TT T T T T T
f mωδ = δ δx α v r β β β . (59) 
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The error state dynamics can be written in state space form: 

 

[ ]
( ) ( )

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

ˆ
ˆˆ ˆi b i

b b

f

m

× × × × ×

× × × ×

× × × × × ×

ω
× × × × × ×

× × × × × ×

× × × × × ×

 − × −     δ − × −   
 δ  = 
 
 
 
   

ω 0 0 I 0 0α
v C q f 0 0 0 C q 0
r 0 I 0 0 0 0
β 0 0 0 0 0 0
β 0 0 0 0 0 0
β 0 0 0 0 0 0













( )
3 1

ˆi
b f

f f

m m

ω

×

ω ω

 −       δ −          δ     +                          

α η
v C q η
r 0
β υ
β υ
β υ

. (60) 

This 18-error-state, state-space model will be used for Kalman filter implementation in this 
work. An important result is that the model is linear and time-varying with respect to the error 
states. The advantage of this is that when the Kalman filter is implemented in realtime, the state 
transition matrix can be constructed without knowing the error states at the last measurement 
time from the information available from the IMU integration. Another advantage of this form is 
that there are no trigonometric operations involved with its computation. The third advantage is 
that the model is truly a stochastic system that is driven by white noise sequences that have 
spectral densities that are either measureable or easily approximated. 

5. Process Noise Measurement 

From equation 60, the following matrices are defined: 

 ( )

[ ]
( ) ( )

3 3

3 3

ˆ
ˆˆ ˆ

ˆˆ ˆ, ,

i b i
b b

×

×

 − × −
 

 − × −   
 =
 
 
 
 
 

ω 0 0 I 0 0

C q f 0 0 0 C q 0

0 I 0 0 0 0F q ω f
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

. (61) 

 ( )

( )
( ) ( )

( )
( )

( )

ˆ

ˆ

i
b f

f

m

diag

diag

diag

diag

diag

ω

βω

β

β

 − 
 

− 
 
 

=  
 
 
 
 
 

σ 0 0 0 0 0

0 C q σ 0 0 0 0

0 0 0 0 0 0
G q 0 0 0 σ 0 0

0 0 0 0 σ 0

0 0 0 0 0 σ

. (62) 
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Using these definitions, the error state dynamics can be represented by the following matrix 
equation: 

 δ = δ +x F x Gw . (63) 

The vector w is a white noise sequence with unity variance and zero mean. The matrix G  
transforms the white noise sequence into the disturbance vector. Therefore, the uncertainty of the 
disturbance vector can be represented by: 

 ( )( ) ( )( ) ( )T
cE t t τ = δ − τ

 
Gw Gw Q , (64) 

which simplifies to: 

 ( ) ( )

( )
( )

( )
( )

( )

( )

2

2

2

2

2

f

T
c

f

m

diag

diag

t t t
diag

diag

diag

ω

βω

β

β

 
 
 
 
 

δ − τ = δ − τ = δ − τ 
 
 
 
 
  

σ 0 0 0 0 0

0 σ 0 0 0 0

0 0 0 0 0 0
Q GG

0 0 0 σ 0 0

0 0 0 0 σ 0

0 0 0 0 0 σ

. (65) 

Representing the process noise as a continuous noise process simplifies filter tuning by making it 
sample time agnostic. However, discrete time integration leads to different variance growth than 
continuous time integration. Consider the integration of a scalar random signal. The integration 
of a continuous white noise signal with spectral amplitude 2

cσ has the transfer function: 

 ( )
( ) ( ) cy s

G s
u s s

σ
= = . (66) 

Therefore, the variance of the output y at some time t is given by (17):  

 2 2 2

0 0
[ ( )] ( )

t t

c cE y t u v dudv t= σ δ − = σ∫ ∫ . (67) 

Consider the integration of a discrete white noise sequence ~ (0, )k dx N σ . If this sequence is 
integrated with rectangular integration, the output is given by: 

 1 0( ... )k k ky t x x x−= ∆ + + . (68) 
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The output variance is given by: 

 

2
1 0 1 0

2 2 2 2 2
1

2 2 2 2

[ ] [ [ ... ] [ ... ] ]

[ ] ( [ ] [ ] ... [ ])

[ ]

T
k k k k k

k k k o

k d d

E y E t x x x t x x x
E y t E x E x E x
E y t k t t

− −

−

= ∆ + + ∆ + +

= ∆ + +

= ∆ σ = ∆ σ

. (69) 

 
The standard deviation of the discrete white noise sequence is easily estimated from a short 
sample of a sensor’s null output, and from it the spectral amplitude can be calculated for an 
equivalent continuous noise process. Therefore, in this work, the noise amplitudes for the angular 
rate sensors and accelerometers, 2

ωσ and 2
fσ , respectively, are calculated as a function of the 

estimated discrete time variance and the integration sample time: 

 ˆc d tσ = σ ∆ . (70) 

The drift-rate terms for the sensor biases are not analytically measured or simulated here. Allan 
variance analysis reveals the existence of flicker noise, but its measurement, simulation, and 
effect on a guided projectile’s navigation solution are left as the subject of future work. 
Therefore, while the sensor noise parameters are measured, the bias drift parameters βωσ , fβσ , 
and mβσ are chosen as tuning parameters. 

 

6. Projectile Measurement Models 

6.1 Vector Measurements 

Because of the normal operating conditions for guided projectiles, there are only a few different 
kinds of measurements available. The most common are vector measurements in which a 
vector’s coordinates are either known a-priori or measured in both the inertial and body-fixed 
frames. Since magnetometers are probably the most common vector measurement used by the 
projectile community, the Earth’s magnetic field vector m will be used to illustrate the mapping 
of the error states to a vector’s measurement residuals. Assuming the scale factor and 
misalignment terms are known, the magnetic field vector as measured by the magnetometer is 
given by: 

 ( )b b i
i m m= + +m C q m β η . (71) 

That is, the measured bm is the known vector in inertial coordinates im transformed into the body 
coordinates, plus a body-fixed bias vector mβ and an additive zero-mean white noise term mη . The 

residual δm is formed by subtracting the predicted measurement ˆ bm from the actual measurement.  
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The predicted measurement is a function of the current estimated quaternion: 

 ( )ˆ ˆb b i
i=m C q m . (72) 

Equation 37 can be substituted into equation 71 to get: 

 [ ] ( )ˆb b i
i m m ≅ − × + + m I α C q m β η  (73) 

 
The measurement residual is then: 

 [ ] ( ) ( )ˆ ˆ ˆb b b i b i
i m m i − = − × + + − m m I α C q m β η C q m  , (74) 

which simplifies to a linear mapping of the error states: 

 ( )( ) 3 3ˆb b i
i m

m
×

   δ = × +     

α
m C q m I η

β
 . (75) 

Another all-weather vector measurement is the projectile’s velocity vector in inertial 
coordinates iv . This can usually be obtained from an onboard GPS unit or from a reference 
trajectory or dynamic model depending on the mission specifications. Since most projectiles fly 
at a fairly low angle of attack, the body fixed coordinates are assumed to be: 

 { }0 0
Tb b=v v  . (76) 

The noise in the velocity vector is usually more naturally expressed in inertial coordinates. The 
measurement residual is given by: 

 ( )ˆi i i b
bδ = −v v C q v   . (77) 

The measured velocity in inertial coordinates can be rewritten in terms of the error states and the 
noise vector vη : 

 ( ) [ ]ˆi i b
b v ≅ + × + v C q I α v η  . (78) 

 

This leads to the following linear mapping of the error states to the velocity vector residual: 

 ( )ˆi i b
b v δ = − × + v C q v α η   (79) 

6.2 Angle Measurements 

Some measurement sources provide direct measurements of Euler angles. For example, a 
constellation of thermopile sensors with the appropriate signal processing provides a direct 
measurement of the roll angleφ from a ZYX Euler angle rotation sequence, except in specific 
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weather conditions (2, 3). Certain computer vision algorithms can use horizon detection to 
measure both the pitch angleθ as well asφ  (20). Arguably, it might not make sense to even be 
using a quaternion-based attitude representation in this situation, but if quaternions are more 
suited for the mission requirements it is still simple to use Euler angle measurements. In this 
case, one would compare the measured Euler angles to the Euler angles computed from the 
current quaternion prediction to get Euler angle error residuals. That is, for a typical ZYX Euler 
angle rotation sequence: 

 ˆ
φδφ = φ−φ+η   , (80) 

 ˆ
θδθ = θ−θ+η   , (81) 

 
and ˆ

ψδψ = ψ −ψ +η   , (82) 

where: 

 ( )( )2 2 2 2
3 4 1 2 1 2 3 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆatan2 2 ,q q q q q q q qφ = + − − + . (83) 

 ( )( )( )1
2 4 1 3

ˆ ˆ ˆ ˆ ˆsin 2 q q q q−θ = − − . (84) 

 ( )( )2 2 2 2
2 3 1 4 1 2 3 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆatan2 2 ,q q q q q q q qψ = + + − − . (85) 

A quaternion Kalman filter estimates small rotation angles however, so a mapping must be used 
between the Euler angle residuals, and small rotation angle error states. Assuming that both Euler 
angle residuals and error states are small angles, the mapping between the two is identical to the 
mapping between Euler angle time derivatives and the body-fixed angular rate vector: 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ1 sin tan cos tan

ˆ ˆ0 cos sin

ˆ ˆ ˆ ˆ0 sin / cos cos / cos

 φ θ φ θ  δφ     δθ = φ − φ 
  δψ   

φ θ φ θ  

α

   


  


   

. (86) 

When implementing Euler angle measurements, it is very important to make sure that the 
measured and predicted quantities are in the same quadrant.  

6.3  Position and Velocity Measurements 

The availability and source of actual position measurements is highly subjective to mission 
requirements. The mapping from the error states to direct position or velocity residuals is simple: 

 [ ]ˆ
r− = δ +r r I r η  . (87) 
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 [ ]ˆ
v− = δ +v v I v η  . (88) 

In reality, the measurements are usually more complicated. If the user has access to the direct 
GPS pseudo-range and carrier-frequency measurements, it would be more accurate to use the 
well-known GPS measurement models that include user clock bias. If the user does not have 
access to the direct receiver outputs but instead is provided with the receiver’s calculated 
position and velocity estimate, it may be more accurate to measure the errors to construct an 
auto-regressive or Gauss-Markov error model instead of assuming white noise. In the case of a 
reference trajectory, it may be beneficial to treat the dynamic model as a random process so that 
the reference trajectory “measurements” get weighed less and less as the trajectory progresses in 
time. A simple way to do this is to model the errors in reference trajectory states as three coupled 
position velocity states driven by random noise: 

 
0 1
0 0

x zx z
ref

x zx z

rr
vv

−−

−−

δ δ   
= +     δδ     

η
 

 
. (89) 

 
Deviations from the reference trajectory due to unmodeled disturbances such as wind would be 
accounted for in the noise term refη which is parameterized by the tuning variable refq : 

 ( ) ( ) ( )2

0 0
0

T
ref ref

ref
E t t

q
 

 τ = δ − τ  
 

η η . (90) 

The measurement covariance at some time later can be calculated from an initial value 0refR and 

the tuning variable: 

 
( )
( )

( )
( )

3 2
2

0 2

1 1 0 3 2
0 1 1 2

T

x z x z
ref ref

x z x z

r t r t t t t
E q

v t v t t t t
− −

− −

 δ δ           = +       δ δ            
R

 

 
. (91) 

This measurement covariance matrix would then be used in the EKF when calculating the gains 
for the position and velocity measurements. 
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7. Kalman Filtering Implementation 

The Kalman filter is eventually intended to be run on an embedded processor. In this work, this 
is accomplished by discretizing the error state dynamics so that the Kalman filtering equations 
can be updated at a lower frequency than the integrated states. The integration of the gyroscopes 
and accelerometers to acquire quaternion, velocity, and position will be updated at a faster rate 
than the EKF since the integration should require significantly less computing power and 
delayed feedback can degrade the performance of flight controllers. Assuming some type of 
multitasking is used, the Kalman filter equations are run at a slower rate with a lower priority as 
shown in table 1. 

Table 1. Kalman filter multitasking schedule. 

IMU Integration Time i = EKF Update Time j = 
0 Start at 0ˆ −x  

1 

Measurements 0j=y  
Kalman Filtering 

Calculations 
Updated 0ˆ j

+
=x known 

Predict 1ˆ j
−
=x  

1 Integrate ˆ −x from 0ˆ i
−
=x  

2 Integrate ˆ −x from 1ˆ i
−
=x  

3 Integrate ˆ −x from 2ˆ i
−
=x  

4 Integrate ˆ −x from 3ˆ i
−
=x  

5 Integrate ˆ −x from 1j
−
=x  

2 

Measurements 0j=y  
Kalman Filtering 

Calculations 
Updated 1ˆ j

+
=x known 

Predict 2ˆ j
−
=x  

6 Integrate ˆ −x from 5ˆ i
−
=x  

7 Integrate ˆ −x from 6ˆ i
−
=x  

8 Integrate ˆ −x from 7ˆ i
−
=x  

9 Integrate ˆ −x from 8ˆ i
−
=x  

— Etc. — Etc. 
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The integration of the full states is accomplished using the equations in section 5 and the best 
known gyroscope, and accelerometer calibrations. The actual Kalman filtering calculations are 
performed to estimate the error states at the time of the measurements. Each Kalman filter 
iteration consists of the following five steps: 

1. Measurement/Storage 

Record the measurements and their covariance values (if time varying) from whatever sources 
are available. Record the value of integrated full states at this time, as they will be used to form 
the residuals. 

2. Covariance Prediction 

The full state prediction comes from the integration task. The a-priori error-state estimate is zero: 

 ˆ j
−δ =x 0 . (92) 

An estimate of the a-priori error-state covariance matrix j
−P  must be predicted from the previous 

iteration’s a-posteriori error-state covariance 1j
+
−P  and the error-state dynamics. The matrix F  

previously defined in equation 61 can be discretized to form a state transition matrix using the 
second-order approximation for the matrix exponential: 

 2 21
2

t t= + ∆ + ∆Φ I F F . (93) 

The values that go into the F  matrix are determined from the current a-priori quaternion estimate 
and IMU outputs, and the previous iteration’s a-posteriori quaternion estimate and IMU outputs. 
The nonzero terms in F are therefore: 

 

[ ] ( )

( )
( ) ( )

( ) ( )

1

1 1

1

ˆ ˆ ˆ / 2

ˆ ˆˆ ˆ
ˆˆ

2
ˆ

j j

i b i b
b j j b j ji b

b

i i j
b b j

−

− +
− +

−

 − × = − + × 
   − × + − ×    − × = 

− = −

ω ω ω

C q f C q f
C q f

C q C q

. (94) 

Note that the term 1
j
j−q is the average quaternion determined from the algorithm in appendix B, as 

arithmetic averaging of two rotation transformation matrices violates the orthonormal 
constraints. The a-priori error state covariance is calculated as: 

 1
T T

j j dE− +
− = δ δ = + P x x ΦP Φ Q . (95) 

The discrete time process noise covariance matrix dQ is determined from: 

 ( ) ( )
0

Tt t t
d ce e d

∆ −τ −τ= τ∫ F FQ Q . (96) 
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The previous equation can be simplified considerably by assuming that the F matrix is linearized 
about the conditions ˆˆ 0= =ω f and ( )ˆb

i =C q I . This makes some sense intuitively, works in 
practice, and is used in reference 11, but an analytical reason why this works is left as a subject 
of future research.  With this simplification and the definition of cQ defined in equation 65 an 
analytical expression can be determined. With the notational shorthand ( )Λ v meaning a matrix 
with the elements of the vector v along the diagonal, the analytical expression is: 

  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( )

3 2
2 2 2

3 4 2 2
2 2 2 2 2

2 4 3 5 3
2 2 2 2 2

2 2
2 2

2 3
2 2 2

2

3 2

3 8 2 2

2 8 3 20 6

2 2

2 6

f f f f f

f f f f f
d

f f f

m

t tt

t t t tt

t t t t t

t t

t t t

t

ω βω βω

β β β

β β β

βω βω

β β β

β

 ∆ ∆
∆ + −


 ∆ ∆ ∆ ∆

∆ + + −

∆ ∆ ∆ ∆ ∆
+ + −

=
∆ ∆

−

∆ ∆
− − ∆

∆

Λ σ Λ σ 0 0 Λ σ 0 0

0 Λ σ Λ σ Λ σ Λ σ 0 Λ σ 0

0 Λ σ Λ σ Λ σ Λ σ 0 Λ σ 0
Q

Λ σ 0 0 Λ σ 0 0
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3. Evaluate residual mappings 

All of the linear maps from the error states to the residuals in section 6 are functions of the 
current full state vector. In the case of linear Kalman filters, if all of the measurements are 
uncorrelated the measurements can be processed one at a time with identical results as 
processing them all at once (17). This adds convenience and reduces computation time since 
matrix inversion is avoided. To achieve the same effect with an EKF, the measurement maps 
must all be evaluated using the same a-priori full state estimate. 

4. Sequential Kalman filter innovation steps 

For each available measurement the following equations steps are taken. All of the residual maps 
in section 6 can be put into the form: 

 yδ = δ + ηh x , (98) 

where yδ is equal to the actual measurement minus the predicted measurement. The noiseη  will 
have some known covariance 2

yσ . The Kalman gain is then: 

 
( )2

T
j
T

j y

−

−
=

+ σ

P h
k

hP h
. (99) 

The error state vector is updated with the Kalman gain: 

 ˆ ˆj j y+ −δ = δ + δx x k . (100) 
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The error state covariance matrix is updated next: 

 ( )j j
+ −= −P I kh P . (101) 

If there are more measurements to be processed, then the a-priori error states and covariance 
matrix are overwritten as ˆ ˆj j

− +δ = δx x and j j
− +=P P before the innovation steps are repeated with the 

next measurement. 

5. Update the full states and calibration parameters 

Using the definitions for each error state as defined in section IV the full state estimate can be 
updated with the error state estimate. For the quaternion, this amounts to: 

 
1

ˆ ˆ
2j j

+ −  
= ⊗ 

 
q q

α
. (102) 

The position and velocity estimates are updated as: 

 ˆ ˆj j
+ −= + δr r r . (103) 

 ˆ ˆj j
+ −= + δv v v . (104) 

The bias estimates for the magnetometer, gyroscopes, and accelerometers are used to correct the 
calibrations for each sensor, and then set to zero. At this point, the full state estimates are 
updated at time j , which will have been some distance in the past depending on the speed of the 
processor. A current full state estimate can be obtained by using the IMU integration equations in 
section 3 and the outputs of the gyroscopes and accelerometers at time j and the current time. 
Note that when applying equation 70 to calculate the continuous random walk coefficients, better 
performance is usually obtained by using the time difference between the current time and time 
j when this time step is large instead of the integration time step. 

 

8. Simulation Results 

To validate some of the models and algorithms presented here, simulations were constructed in a 
Matlab/Simulink environment that included full six-degree-of-freedom (6-DOF) motion of the 
projectile as well as the state estimation, guidance, and control algorithms. The simulations are 
not to provide performance metrics for any specific system, but to demonstrate the basic 
functionality of the algorithms discussed in this report and discuss some of the problems with 
guided projectile applications. 
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8.1 Direct-Fire Application 

The first system simulation is a low QE guide to hit mission against a moving target. The 
projectile used was the U.S. Army/Navy standard finner (21–24), which is a fin-stabilized 
nonspinning round, modified with four canards as shown in figure 3. 

 

 

Figure 3. U.S. Army/Navy standard finner. 

The projectile uses proportional navigation as the guidance law to engage the moving target. The 
autopilot is a state-feedback controller designed using optimal control techniques (25). The 
initial conditions for the simulation are shown in table 2.  

Table 2. Direct-fire initial conditions. 

Quantity Value Units 
Muzzle velocity 200 m/s 
Gun elevation 8 deg 

Projectile initial position {0  0  0}T m 
Target initial position {1000  0 0}T m 

Target velocity {0  10  0}T m/s 
Projectile initial angular velocity {2  2  2}T rad/s 

 

The state estimator is only an attitude estimator in this case, as no actual position or velocity 
measurements are available. The gyros are corrupted by white noise with the same parameters 
measured from some modified ADXRS300 angular rate sensors, although no flicker or rate-ramp 
was modeled. Magnetometer measurements are present with the same noise measured from an 
HMC1043 solid-state magnetometer. It is assumed that relatively large initial biases might be 
present in the magnetometer due to body-fixed static magnetic fields generated by the projectile 
itself. The effects of motors and eddy current effects are neglected. No misalignment, scale 
factor, non-orthogonality, or g-sensitivity errors are modeled for either sensor. In addition to 
magnetometers, it is assumed that a computer vision horizon detection algorithm produces roll 
and pitch estimates at 30 Hz. It is also assumed that the computer-vision and EKF processing 
takes 80% of the update interval (26.7 ms) to complete. It turns out the yaw angleψ is 
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unobservable with this configuration (it is indistinguishable from the x-axis magnetometer bias). 
To remedy this, a heuristic yaw angle measurement of 0° is used for the first 0.5 s to enable the 
sensor biases to converge. The EKF parameters are shown in table 3, and errors are illustrated in 
figures 4–6.  

Table 3. Direct-fire EKF parameters. 

Quantity Value Units 
Initial attitude error covariance ( )0TE t  = αα  diag{100 1 1}2 deg2 

Initial gyro bias error covariance ( )0TE tω ω  = β β  diag{10 10 10}2 (deg/s)2 

Initial magnetometer bias error covariance ( )0T
m mE t  = β β  diag{1 1 1}2 Gauss2 

Gyro bias drift covariance ( )2diag βωσ  diag{1  1  1}x1e-3 (rad/s/s)2 

Magnetometer bias drift covariance ( )2
mdiag βσ  diag{1  1  1}x1e-3 (Gauss/s)2 

Gyroscope noise std. dωσ  { 2.0626  2.0626  2.0626 }T deg/s 
Magnetometer noise std. mdσ  {0.0022  0.0022  0.0022}T Gauss 
Horizon roll/pitch measurement noise std. 1 Deg 
Quaternion integration rate 500 Hz 
Kalman filter update rate 30 Hz 
Earth’s magnetic field in gun-target line coordinates {0.5  0  0}T Gauss 
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Figure 4. Direct-fire small-angle errors. 
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Figure 5. Direct-fire gyro-bias errors. 
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Figure 6. Direct-fire magnetometer-bias errors. 
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The filtered errors are not particularly impressive, but they might very well be usable for this 
kind of mission. The filter is slightly overconfident, which is evinced by relatively high amount 
of error that lies outside of the three standard deviation bound calculated from the estimated error 
covariance matrix. This is common in extended Kalman filters because covariance estimates are 
based on linearized nonlinear mapping functions. 

8.2 Indirect-Fire Application 

The second application is the navigation of an 81-mm mortar equipped with four independently 
controlled canards that deploy near apogee. The projectile is assumed to be equipped 
ADXRS300 angular rate sensors, a HMC1043 solid-state magnetometer, and an ADXL278 
accelerometer triad, as well as an idealized position and velocity measurement for 30 s. The 
position and velocity measurement is just corrupted with additive white noise, while being 
available at 100 Hz.  The initial conditions of the trajectory are listed in table 4, and plot of the 
trajectory is shown below in figure 7. Before the canards deploy, the mortar flies along a ballistic 
trajectory, which entails spinning up to 20 Hz. The fact that real ADXRS300 sensors would clip 
at this spin rate is ignored in this idealized example. 

Table 4. Indirect-fire initial conditions. 

Quantity Value Units 
Muzzle velocity 274 m/s 
Gun elevation 45 deg 

Projectile initial position {0  0  0}T m 
Target initial position {4900  100 0}T m 

Target velocity {0  0  0}T m/s 
Projectile initial angular velocity {0  4  4}T rad/s 

 

 
Figure 7. Indirect-fire trajectory.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 

50 

100 

150 

x (m) 

y (m) 

  

  
target location 
projectile path 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 -3000 

-2000 

-1000 

0 

x (m) 

z (m) 

  

  

target location 
projectile path 

Canards deploy at 16s; 
Round stops spinning soon after 



 27 

The parameters for the sensors and Kalman filter are shown in table 5. A third idealization is that 
the accelerometers are located at the projectile center of gravity. The error results are shown in 
figures 8–13.  

Table 5. Indirect-fire EKF parameters. 

Quantity Value Units 
Initial attitude error covariance ( )0TE t  = αα  diag{100 1 1}2 deg2 

Initial gyro bias error covariance ( )0TE tω ω  = β β  diag{10 10 10}2 (deg/s)2 

Initial accelerometer bias error covariance ( )0T
f fE t  = β β  diag{10 10 10}2 (m/s2)2 

Initial magnetometer bias error covariance ( )0T
m mE t  = β β  diag{1 1 1}2 Gauss2 

Gyro bias drift covariance ( )2diag βωσ  diag{1  1  1}x1e-3 (rad/s/s)2 

Accelerometer bias drift covariance ( )2
fdiag βσ  diag{1  1  1}x1e-3 (m/s2/s)2 

Magnetometer bias drift covariance ( )2
mdiag βσ  diag{1  1  1}x1e-3 (Gauss/s)2 

Gyroscope noise std. dωσ  { 2.0626  2.0626  2.0626 }T deg/s 
Accelerometer noise std. fdσ  { 0.3556  0.3556  0.3556 }T m/s2 

Magnetometer noise std. mdσ  {0.0022  0.0022  0.0022}T Gauss 
Heuristic yaw measurement noise std. 1 Deg 
Heuristic yaw measurement duration 14 s 
Position measurement noise std. 1 m 
Position measurement duration 30 s 
Velocity measurement noise std. 1 m/s 
Velocity measurement duration 30 s 
Velocity vector as an attitude measurement duration 14 s 
Quaternion integration rate 500 Hz 
Kalman filter update rate 100 Hz 
Earth’s magnetic field in gun-target line coordinates {0.5  0  0}T Gauss 
 



 28 

5 10 15 20 25 30 35 40 45 50
-4
-2
0
2
4

time (sec)

α
x(d

eg
)

 

 
error
KF 3σ bound

5 10 15 20 25 30 35 40 45 50

-2
0
2

time (sec)

α
y(d

eg
)

 

 
error
KF 3σ bound

5 10 15 20 25 30 35 40 45 50

-2
0
2

time (sec)

α
z(d

eg
)

 

 
error
KF 3σ bound

 

Figure 8. Indirect-fire angle errors. 
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Figure 9. Indirect-fire velocity errors.
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Figure 10. Indirect-fire position errors. 
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Figure 11. Indirect-fire gyro-bias errors.
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Figure 12. Indirect-fire accelerometer-bias errors. 
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Figure 13. Indirect-fire magnetometer-bias errors. 
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From the covariance bounds, it is clear that some parameters are more observable while the 
round is spinning, while others are less so. Magnetometer biases and angle errors are more 
observable before the canards deploy at 16 s. However, radial accelerometer biases and radial 
gyroscope biases have little to no observability while the round is spinning. This is because 
errors in these terms are “rolled out”; that is, their effects rotate in direction at the spin frequency 
and never produce a noticeable change in the outputs. Angle errors and magnetometer errors 
grow unbounded after the canards are deployed and heuristic measurements cease. Interestingly, 
when the round performs a course correction maneuver at 41 s, the movement provides 
information about the magnetometer bias.  

 

9. Conclusions and Future Work 

The basics of multiplicative quaternion error state modeling have been presented, and some 
methods of using error state models in extended Kalman filters have been discussed. The main 
advantage of using quaternions for projectile attitude estimation is that the error state 
propagation equations depend only on the estimated gyroscope outputs, and not the current value 
of the quaternion. This provides a lot of flexibility in dealing with delayed measurements and 
processing time delays. The velocity and position error states are less convenient because they do 
depend on the current attitude estimate, but they provide a mapping between attitude errors and 
position and velocity errors. This in theory provides some observability into the attitude errors 
from the information provided from position or velocity measurements.  

The measurement equations for common projectile measurements and heuristics have been 
presented, as well as the mappings between error states and measurement residuals. These 
mappings are linear, but depend on the current value of the attitude estimate. Because of this, 
extended Kalman filters have problems with underestimating the error state covariance 
particularly before the filter has converged, or when the system is not strongly observable.  

The basic functionality of the error state modeling has been shown through simulation results. 
The direct-fire simulation required a brief heuristic yaw measurement to stabilize the attitude 
solution. The magnetometer bias errors, gyroscope bias errors, and attitude errors were bounded, 
but the filter was slightly over confident. Nevertheless, it was demonstrated that reasonable 
attitude estimation could be achieved with an update rate of only 30 Hz. The indirect-fire 
simulation demonstrated that magnetometer biases are more observable while the round is 
spinning, but radial accelerometer and gyroscope biases are difficult to observe until the round is 
despun. This doesn’t necessarily prevent someone from incorporating heuristic measurements for 
estimating these biases, but they are not implicitly observable through the error state modeling.   
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There is still a great deal of additional work to be done to develop a functional aided inertial 
navigation system for any real system. For example, biases may not be the dominant sensor error 
term, and more involved error modeling may be necessary. GPS measurements typically have 
their own error models that would need to be included in the filter. There is also much room for 
improvement in dealing with delayed measurements. One improvement for attitude estimators 
would be to recursively update a total state transition matrix at a higher update rate than the 
measurements, and use this for more accurate error state and covariance propagation. 
Computation time could be decreased significantly for the error state and covariance prediction 
steps due to matrix partitioning, making this a viable option in many cases. Decoupling of the 
attitude and position/velocity states may lead to better results depending on the update rates of 
the available measurements.   
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Appendix A. Projectile Center of Gravity Offset
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Given the location of the accelerometer w.r.t an inertial frame i
ar , and the location of the 

projectile center of gravity (CG) in body fixed coordinates b
cgr , the location of the CG in inertial 

frame coordinates can be expressed as: 

 i i i b
cg a b cg= +r r C r . (A-1) 

The output of the accelerometer will be proportional to the acceleration of the accelerometer 
relative to the inertial reference frame, but the projectile dynamics are usually formulated relative 
to the CG. The CG acceleration can be found by double differentiating equation A-1. The 
position of the CG in body coordinates is assumed to be constant, and from here on b

ibω will be 
denoted asω : 

 [ ]i i i b i b i i b
cg a b cg b cg a b cg= + + = + ×r r C r C r r C ω r    . (A-2) 

 [ ]i i i b
cg a b cg= + ×v v C ω r . (A-3) 

 [ ][ ] [ ]i i i b i b
cg a b cg b cg= + × × + ×v v C ω ω r C ω r  . (A-4) 

The reaction force of the restraining “springs” against the proof mass will be proportional to the 
accelerometer’s acceleration with respect to the inertial reference frame minus the acceleration 
due to gravity. The reaction force divided by the proof mass is the specific force i

rf . 

 ( ) [ ][ ] [ ]1i i i i i b i b i
r a cg b cg b cgm m

m
= − = − × × − × −f v g v C ω ω r C ω r g  . (A-5) 

The output of the accelerometer is the specific force vector resolved in the body frame: 

 [ ][ ] [ ]b b i b i b b b i
i r i cg cg cg i= = − × × − × −f C f C v ω ω r ω r C g . (A-6) 
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Appendix B. Average Quaternion 
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Given an old quaternion 1q and a new quaternion 2q , one way to compute the average 
quaternion q is to compute the rotation vectorμ that transforms 1q into 2q and use the same vector 
with half of the magnitude to transform 1q to q . If the quaternion r is defined by 2 1= ⊗q q r , then 
it can be solved for by 1

1 2
−= ⊗r q q . The relationship between a quaternion and a rotation vector 

can be used to solve for the rotation vectorμ : 

 
( )

( )
1

2:4

cos / 2

sin / 2
r

 
   

=   
   

 

μ

μr μ
μ

. (B-1) 

 ( )1
12cos r−=μ . (B-2) 

 ( )2:4 sin / 2
=

μ
μ r

μ
. (B-3) 

The rotation vector can be thought of as the integration of and average angular velocity vector 
ωover a small time interval t∆ ; t= ∆μ ω . Therefore, dividing the rotation vector by 2 has the 
physical interpretation of integrating the angular velocity for half the time. Therefore, the new 
rotation quaternion nr is: 

 
( )

( )

cos / 4

sin / 4n

 
 

=  
 
 

μ
r μ μ

μ
. (B-4) 

The average quaternion is then 1 n= ⊗q q r . 
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